Quantum Simulation of Nanocrystalline Composite Thermoelectric Properties

نویسندگان

  • T. D. Musho
  • D. G. Walker
چکیده

For the past few years, nanoscale structures have been proposed and investigated experimentally for their enhanced thermoelectric properties over bulk materials. These structures offer several advantages: 1) increased local density of states, which can improve the Seebeck coefficient and 2) reduced thermal transport due to phonon confinement and increased scattering. Recently, nanocrystalline composites (NCC) have been examined for their ability to outperform the alloy limit in terms of reduced thermal conductivity. However, the electrical performance has not been examined from a quantum point of view. This work provides quantum simulations of a two-dimensional composite system meant to model certain geometric features of NCC’s. While the results cannot be quantitatively compared to actual measurements, they show how their electrical behavior differs from well-known superlattice devices. This work will aid in the design of the next generation of NCC devices for thermoelectric performance. NOMENCLATURE d Diameter (nm) l Length (nm) T Temperature (K) S Seebeck (μ V/K) σ Electrical Conductivity (1/Ω-m) PF Power Factor (W/m2K) ZT Thermoelectric Figure of Merit Address all correspondence to this author. k Thermal Conductivity (W/m2K)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds

Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...

متن کامل

Semiconductor Nanomaterial Development For Photovoltaic And Thermoelectric Applications

Chen, Liangliang, Ph.D., Purdue University, December 2013. Semiconductor Nanomaterial Development for Photovoltaic and Thermoelectric Applications. Major Professor: Xiulin Ruan, School of Mechanical Engineering. Today’s world is frequently going through fossil energy shortage and environmental consequences brought by the over-emission of greenhouse gas from burning fossil fuels. Therefore, it i...

متن کامل

Magnetic and Electrical Properties of Nanocrystalline Fe85Si10Ni5/Phenolic Resin Soft Magnetic Composites

In this work, nanocrystalline Fe85Si10Ni5 soft magnetic powders were prepared by mechanical alloying and subsequent annealing to reduce the internal stresses and lattice strains. The powders were mixed with phenolic resin and warm pressed to produce nanostructured soft magnetic composites. The effect of annealing time and temperature on the crystalline structure, microstructure and magnetic pro...

متن کامل

EFFECT OF SiC ADDITION ON HYDROGEN DESORPTION PROPERTIES OF NANOCRYSTALLINE MgH2 SYNTESIZED BY MECHANICAL ALLOYING

In this study, the composite material with composition of MgH2-5 wt% SiC has been prepared by co-milling of MgH2 with SiC powder. The effect of milling time and additive on MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area, and also hydrogen desorption properties of obtained composite was evaluated by thermal analyzer method and compared with pure un...

متن کامل

General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009